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Abstract. We present a number of hyperelliptic function identities that occur in the chiral Potts
model. Some of these are relevant to the outstanding problem of solving the functional relations
for the order parameter.

1. Introduction

The chiral Potts model is a model in statistical mechanics in which each sitei of a planar
(usually square) lattice contains a ‘spin’σi that can takeN values. Adjacent spins interact.
This model was first studied in Hamiltonian form [1–3], and for small values ofN [4, 5].
In 1988 the general-N integrable case of the lattice model was discovered [6]. This is
‘solvable’ in the sense that it satisfies the star–triangle (Yang–Baxter) relations, and the
bulk free energy has been calculated. ForN > 2 the order parameters have not been
calculated, but a very believable and elegant conjecture has been made [7]. Its derivation
remains a vexed problem [8], and is partly the motivation for this paper, where we present
certain identities satisfied by the hyperelliptic functions that occur in the parametrization of
the model and are relevant to the problem of solving the equations given in [8]. They have
not all been proved; their status is explained in the summary.

As often happens, we have a conflict of notations: the vertical and horizontal rapidities
of the chiral Potts model are usually denoted byp andq. We do this here, but as a result
we write the nome of them hyperelliptic functions asx, so thatq-series [9] become here
x-series.

2. Hyperelliptic parametrization

The interactions along any edge are functions ofN , of universal constantsk and k′, and
of two ‘rapidities’ p andq. These are points in projective(a, b, c, d) space that lie on the
curve

aN + k′bN = kdN k′aN + bN = kcN (1)

where

k2+ k′2 = 1. (2)

For N = 2 the model reduces to the Ising model solved by Onsager [10]; the curve
is of genus 1, and can be parametrized in terms of ordinary single-variable Jacobi elliptic

0305-4470/98/326807+12$19.50c© 1998 IOP Publishing Ltd 6807



6808 R J Baxter

functions. ForN > 2 the curve is of higher genus and we need to use hyperelliptic functions
[11]. Define constantsρ = {ρ1, . . . , ρN−1} in terms ofk, k′ as in [11], withρα = ρN−α,
ρ0 = ρN = 0, and set

ταβ = ρα + ρβ − ρ|α−β| for α, β = 1, . . . , N − 1. (3)

Let s = {s1, . . . , sN−1} be a set of variables. Define the hyperelliptic function

2(s) =
∑
m

exp

{
2π i

∑
α

mαsα + π i
∑
α

∑
β

mαταβmβ

}
(4)

the inner sums being overα, β = 1, . . . , N − 1, and the outer sum over all values of the
integersm = {m1, . . . , mN−1}.

Let g = {g1, . . . , gN−1}, where

gα = α/N (5)

write {g1/2, . . . , gN−1/2} in the obvious way asg/2, and similarly fors, ρ. Define

k = sinθ k′ = cosθ ω = e2π i/N (6)

χ = iei(2−N)θ/N 〈s〉 = (s1+ · · · sN−1)/N. (7)

Then from equation (48) of [11], we can takea, . . . , d to be

a = eiπ/2Ne2π i〈s〉2(s − 1
2g + 1

2ρ) b = χeiπ/N2(s − 1
2g − 1

2ρ)

c = 2(s + 1
2g − 1

2ρ) d = χe−iπ/2Ne2π i〈s〉2(s + 1
2g + 1

2ρ).
(8)

Let

Dαλ = 0 if α < λ

= 1 ifα > λ (9)

and write2(s) alternatively as2[s] or 2{sα}. Thens1, . . . sN−1 are not independent, but
must satisfy theN − 2 relations

2{sα + 1
2ταλ − 1

2Dαλ} = 0 for λ = 2, . . . , N − 1 (10)

leaving one degree of freedom fors1, . . . , sN−1.
A related hyperelliptic function21(s) is obtained by replacing eachsα in (4) by sα− 1

2,
and lettingm1 range over all half-an-odd-integer values (m2, . . . , mN−1 remain integers).
From equation (32) of [11],

21(s) = −i exp{π i(s1+ 1
2ρ1)}2{sα + 1

2τα1− 1
2Dα1}. (11)

It is an odd function, zero when all its arguments are zero:

21(−s) = −21(s) 21(0) = 0. (12)

2.1. Invariances

The2-function has the following symmetries (true for arbitrarys1, . . . , sN−1, not necessarily
satisfying (10)):

2{sα + δαj } = 2(s) = 2(−s)
2{sα + ταj } = exp{−2π i(sj + ρj )}2(s)
2(s) = 2{sα−1− sN−1} = 2{sN+1−α − s1}

(13)
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for j = 1, . . . , N − 1, takings0 = sN = 0. Hence

21{sα + δαj } = exp{π iD1j }21(s)

21{sα + ταj } = −exp{−2π i(sj + ρj )}21(s).
(14)

Using the symmetries (13) (withj = 1), for all integersn and arbitrarys1, . . . , sN−1

we can verify that

2{nρα + sα} = e−2π ins12{nρα + sα+1− s1}.
Settingsα = jα/N for α = 1, . . . , N − 1, with j an integer, it follows that

2(nρ + jg) = 0 providednj/N is not an integer. (15)

Numerical calculations suggest that (15) may also be true whenN = 4 andn = j = 2,
which in turn suggests that it may be true for the more general situation when neithern nor
j is divisible byN . This would be consistent with the zeros of our later equations (26),
(27), but we have not proved this. Its proof must be more subtle: (13)–(15) are true for
arbitraryρ1, . . . , ρN−1 (with ρj = ρN−j ), whereas a leading-order calculation for smallk′

indicates that, forN = 4, 2(2ρ + 2g) is zero only whenρ1, ρ2 are related as in [11].
There are various automorphisms that takea, b, c, d, sα to the values indicated in the

folowing table, leaving the relations between them unchanged, namely

M
(1)
j ωa b c ωd sα + δαj

M
(2)
j ωja ωjb c d sα + ταj

M(3) c ω1/2d ω−1/2a ω−1b −sα
M(4) a b ω−1c d sα−1− sN−1+ 1

2(δα1+ τα2− τα1)

M(5) d ω1/2c ω−1/2b a sN+1−α − s1− 1
2τα1

R b ωa d c s1− sN+1−α + 1
2τα1

for j = 1, . . . , N − 1, ignoring overall normalization factors ofa, b, c, d. For instance, the
mappingM(5) takesb to ω1/2c, and sα to sN+1−α − s1 − 1

2τα1. Note thatR = M(3)M(5),

R2 = M(2)
1 andM(3)2 = M(5)2 = 1.

2.2. A basic identity

The variablesa, b, c, d, s = {s1, . . . , sN−1} are all functions of the rapidityp (put another
way,p is specified by these variables, or by some subset of them), so should bear an index
p. Let us write them asap, bp, cp, dp, sp = {(sp)1, . . . , (sp)N−1}, with the convention that
a Greek, numerical,N or N − 1 suffix denotes the element of the sets, while a lower
case Roman suffix (p, q, r or t) denotes the rapidity of the whole set. A related variable,
in terms of which we originally obtained the hyperelliptic function parametrization isvp,
where

bpdp

apcp
= exp{i(π + 2vp)/N}. (16)

Then for any four rapiditiesp, q, r, t

21(sp − sq)21(sp + sq)21(sr − st )21(sr + st )
−21(sp − st )21(sp + st )21(sr − sq)21(sr + sq)
= 21(sr − sp)21(sr + sp)21(st − sq)21(st + sq). (17)

This is a very general identity which extends the corresponding identity for ordinary
elliptic functions: equation (15.3.10) of [12]. It can be proved in much the same way.
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Consider the ratio of the LHS to the RHS: from (12) and (14), it is invariant under the
automorphismsM(1)

j , M(2)
j , M(3), applied to the rapidityp (say). It follows that it is a

single-valued function of the variablevp (it is independent of the choice of the contour and
the sign of1 in equation (35) of [11]). It is analytic, except possibly for isolated singularities
at the zeros of the RHS, and at the points where(sp)1, . . . , (sp)N−1 are nonanalytic functions
of vp. These last are whenvp equals±θ or∞, and it can be verified that the ratio remains
finite as vp approaches these values. Since it is analytic in their neighbourhood, it is
therefore analytic at these points.

There are two possible types of zero of the RHS: there are those whose location is
dependent on the other rapidityr, occurring whensp = ±sr , to within the automorphisms
M
(1)
j , M(2)

j , i.e. whenvp = vr . They are simple zeros, and it is obvious that the LHS then
also vanishes, so the ratio is analytic.

The other possible zeros are when

(sp)α = 1
2(τα1− ταj +Dαj −Dα1) (18)

for j = 2, . . . , N −1. If this happens, then from (11), the factor21(sr − sp) is proportional
to 2{(sr )α + 1

2ταj − 1
2Dαj }, which vanishes because of the restrictions (10). However, the

same is also true of the factors21(sp − sq) and21(sp − st ) on the RHS (and, because of
theM(3) automorphism, of the factors21(sr + sp), 21(sp + sq), 21(sp + st )).

One should consider whether the values (18) of(sp)1, . . . , (sp)N−1 are attained for some
value ofvp, i.e. whether they satisfy (10). ForN = 3 they do, but forN > 3 it seems that
they do not. In either case there is no problem: if they do attain (18) then each of the six
factors will have a simple zero invp, and these factors will cancel out of the ratio of the
LHS to the RHS of (17). If they do not, then there are no such zeros to cancel.

In either case,the ratio is analytic for allvp (including the point at infinity), so from
Liouville’s theorem it is a constant. Takingvp = vt , we can choosesp = st and observe
that this constant is unity. This establishes the identity (17).

We shall present a number of further identities; first we need some more definitions:

tα = s1+ · · · + sα − α(s1+ · · · + sN−1)/N. (19)

As with s, let t = {t1, . . . , tN−1}, and writetp for the sett corresponding to the rapidityp.
The automorphismR2 = M(2)

1 applied top takestp to tp + ρ, while M(1)
1 . . .M

(1)
N−1 takes

tp to tp + g.

3. Functions of two rapidity variables

The Boltzmann weights of the chiral Potts model are

Wpq(n) =
n∏
j=1

dpbq − apcqωj
bpdq − cpaqωj Wpq(n) =

n∏
j=1

ωapdq − dpaqωj
cpbq − bpcqωj . (20)

Both are periodic of periodN : Wpq(n+N) = Wpq(n), Wpq(n+N) = Wpq(n); regarding
Wpq(i − j) as the elementi, j of anN × N cyclic matrixWpq , a quantity that occurs in
the functional relations for the transfer matrices [13] is

fpq = (detWpq)
1/N

/ N−1∏
n=0

Wpq(n)
1/N . (21)
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Another quantity that occurs in the functional relations for the generalized correlation
function [8] is

L(0)pq (j) = k(N−1)/N
N−1∏
m=1

{
bpdq − ωj−m−1dpbq

cpdq − ωj−m−1dpcq

cpaq − ωj−m−1apcq

bpaq − ωj−m−1apbq

}m/N
. (22)

3.1. Some general-N identities

With the normalization of equation (8), it follows from (17) that

aqcqbpdp − apcpbqdq = −χ2 exp

{
iπ

N
+ 2π i〈sp〉 + 2π i〈sq〉

}
×21(ρ)21(g)21(sq − sp)21(sq + sp). (23)

Two identities that we conjecture to be true, but have not proved, are

N−1∏
n=1

Wpq(n) = exp

{
π i

N−1∑
α=1

(2α −N − 1)(sq − sp − ρ)α
} N−1∏
j=0

2(tp − tq + jg + ρ)
2(tp − tq + jg) (24)

L(0)pq (j) =
2(tq − tp + jg)

2(tq − tp + (j − 1)g)
. (25)

Remembering thattR2q = tq + ρ and forming the ratioL(0)
p,R2q

(j)/L(0)pq (j), from (25) we
obtain

ωcpaq − ωjapcq
bpdq − ωjdpbq =

2[tq − tp + (j − 1)g]2(tq − tp + jg + ρ)
2(tq − tp + jg)2[tq − tp + (j − 1)g + ρ]

(26)

while the ratioL(0)p,q(j + 1)/L(0)pq (j) gives

bpdq − ωjdpbq
cpdq − ωjdpcq

cpaq − ωjapcq
bpaq − ωjapbq = k

−2/N 2(tq − tp + jg)2
2[tq − tp + (j − 1)g]2[tq − tp + (j + 1)g]

(27)

from which one can deduce that

2(jg)/2(0) = kj (N−j)/N for j = 0, . . . , N. (28)

4. The caseN = 3

If N = 3, thenρ1 = ρ2 = ρ, so if we define

x = e2π iρ |x| < 1 (29)

then

2{s1, s2} = 8(e2π is1, e2π is2) (30)

where

8(α, β) =
∑
m,n

xm
2+mn+n2

αmβn (31)

the sum being over all integersm, n.
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4.1. Identities for arbitrary arguments

First we prove some identities that are true for all argumentsα, β of the hyperelliptic
functions.

The function8(α, β) can be expressed as the sum of two products of single-variable
2-functions [11]: for this reason such single variable functions occur in the following
relations. Four that we shall need are

ψ̃(z) =
∞∏
n=1

(1− x3n−2z)(1− x3n−1/z) ψ(z) = z−1/6ψ̃(z) (32)

r(z) = z−1/2
∞∏
n=1

(1− xn−1z)(1− xn/z) φ(z) = ψ(z−1)/ψ(z). (33)

The symmetry and quasiperiodicity relations (13) become

8(α, β) = 8(β, α) = 8(α−1, β−1) = 8(α, α/β) = 8(β/α, β) (34)

8(x2α, xβ) = x−1α−18(α, β) 8(xα, x2β) = x−1β−18(α, β) (35)

and hence8(x3α, β) = x−3βα−28(α, β), 8(α, x3β) = x−3αβ−28(α, β).
From these one can deduce that

8(α/x, β) = α8(x−1β−1, α/β). (36)

Settingα = 1/β = ω or ω2, it follows that

8(ω/x, ω2) = 8(ω2/x, ω) = 0 (37)

which is a special case of (15).
Three related functions are

8j(α, β) =
∑

m−n=j, mod 3

xm
2+mn+n2

αmβn (38)

the sum being over all integersm, n such thatm− n = j , modulo 3. Then

8(ωjα, ω−jβ) = 80(α, β)+ ωj81(α, β)+ ω2j82(α, β) (39)

and

8j(xα, x
2β) = x−1β−18j−1(α, β). (40)

4.2. First product–sum relation

Let α, β, u be three variables related by

α = u3β2 (41)

and consider the product

h(α, β) = 8(u, u2β)8(ωu, ω2u2β)8(ω2u, ωu2β). (42)

(This is the function
∏
2(t + jg) that occurs in (24).)

The RHS is an analytic function ofu andβ in the domain 0< |u|, |β| < ∞, and is
unchanged by replacingu by ωu, so has a convergent double Laurent expansion in powers
of u3 andβ, or equivalently ofα andβ:

h(α, β) =
∑
m,n

cmnα
mβn. (43)
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It satisfies the quasiperiodicity relations

h(x3α, β) = x−3βα−2h(α, β) h(α, x3β) = x−3αβ−2h(α, β). (44)

The functions8,80,81,82 also satisfy these, buth doesnot satisfy the stronger relations
(35).

Substituting the expansion (43) into these relations and equating coefficients:

cm+2,n−1 = x3m+3cmn cm−1,n+2 = x3n+3cmn. (45)

The general solution of these equations iscmn = dm−nxm
2+mn+n2

, wheredm+3 = dm, so
h(α, β) must be a linear combination of80(α, β),81(α, β),82(α, β):

h(α, β) = C080(α, β)+ C181(α, β)+ C282(α, β) (46)

the coefficientsC0, C1, C2 depending only onx.
Invertingα, β, u in (42), and using the symmetry8(α−1, β−1) = 8(α, β), we find that

h(α−1, β−1) = h(α, β). Since81(α
−1, β−1) = 82(α, β), this implies thatC1 = C2. Setting

α, β, u = x, x2, x−1 in (42) and using (37), we note that

h(x, x2) = 0. (47)

Substituting this into (46) and using (40), it follows that

C082(1, 1)+ C1[80(1, 1)+81(1, 1)] = 0. (48)

Let

V (x) = 8(1, 1) Vj (x) = 8j(1, 1). (49)

We note at this point that we are treading in the footsteps of the masters: the functionV (x)

was examined by Ramanujan, who wrote down the formula

V (x) = 1+ 6
∞∑
n=1

{
x3n−2

1− x3n−2
− x3n−1

1− x3n−1

}
. (50)

From (39) and symmetry,

V (x) = V0(x)+ V1(x)+ V2(x) V1(x) = V2(x). (51)

Expanding these functions, we find to the first few terms that

V0(x) = V (x3) = 1+ 6x3+ 6x9+ 6x12+ 12x21+ · · ·
V1(x) = V2(x) = 3x + 3x4+ 6x7+ 6x13+ · · · (52)

which led us to conjecture that

V0(x) = V (x3) V1(x) = V2(x) = 3xQ(x9)
3
/Q(x3)

V0(x)− V1(x) = Q(x)3/Q(x3) V0(x)
3− V1(x)

3 = Q(x3)
9
/Q(x9)

3
(53)

where

Q(x) =
∞∏
n=1

(1− xn). (54)

The author is indebted to George E Andrews [14] and Michael Hirschhorn [15] for
providing proofs of these relations (53). In particular, Andrews showed that they are simple
consequences of the identities proved by Borweinet al [16] in their paper on the cubic
modular identities of Ramanujan. This is shown in the appendix.

Solving (48) for C1/C0 and obtaining the normalization ofC0, C1, C2 by setting
α = β = 1 in (46), we obtain the alternative expression forh(α, β):

h(α, β) = [Q(x)3/Q(x3)][V (x)80(α, β)− V1(x)8(α, β)]. (55)
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4.3. Second product–sum relation

A related identity that we shall use is proposition 2.2 of [16], namely

8(x, x) = 3Q(x3)3/Q(x). (56)

(One can verify directly from their definitions as double sums thatV1(x) = x8(x3, x3)

[15].) From (34) and (37),8(x, x) = 8(1, x) and8(ω,ω2x) = 8(ω2, ωx) = 0.
It follows that

8(u, x/u) = Q(x)Q(x3)

∞∏
n=1

(1− ωxn−1u)(1− ω2xnu−1)(1− ω2xn−1u)(1− ωxnu−1).

(57)

The proof of (57) is similar to (but simpler than) that of (55). Writing either side asf (u),
each satisfies the quasiperiodicity relationf (xu) = u−2f (u), and is Laurent expandable
in the domain 0< |u| < ∞. Their difference therefore has a Laurent expansion

∑
cnu

n,
wherecn+2 = xncn. Thuscn is proportional toc0 (c1) if n is even (odd), so the difference is
a combination of just two linearly independent functions, with coefficientsc0 andc1. Both
sides vanish whenu = ω ( or whenu = ω2), which fixes the ratioc1/c0. From (56), the
two sides are equal whenu = 1, which fixesc0, c1 to be zero and proves (57).

Just as we used (56) to establish the more general relation (57), so we can use (57) to
establish that

ψ̃(α)ψ̃(β)ψ̃(α/β)+ u2βψ̃(1/α)ψ̃(β)ψ̃(β/α)+ uβψ̃(1/α)ψ̃(1/β)ψ̃(α/β)
= Q(x)−2Q(x3)

−4
8(u, u2β/x)8(ω−1u, ωu2β)8(ωu, ω−1u2β) (58)

for all α, β, u satisfying (41).
To prove this, regardu, β as independent complex variables andα as defined by (41).

Write either side asf (u, β). Then each satisfies the quasiperiodicity and symmetry relations

f (u, β) = (x2α2/β)f (xu, β) = x2αβf (u/x, x3β)

f (u, β) = f (u−1, u3β) = u2βf (uβ, u−3β−2).
(59)

Each is Laurent expandable in integer powers ofu andβ: it follows that the difference can
be written as∑

mn

xm
2/3−mn+n2−n/3umβn

wherecmn = cm+3,n = cm,n+3 = c3n−m,n = c3n−2m+1,n−m+1. The cmn are therefore all linear
combinations ofc00, c01, c02, so the difference is the sum of just three linearly independent
functions ofu andβ, with coefficientsc00, c01, c02.

If we chooseβ = x2/u3, thenα/β = x2, ψ̃(α/β) vanishes and we regain (57). The
difference therefore vanishes. The three functions now depend only onu, but are still
linearly independent (to leading order they are proportional tou2+ u3+ u4+ u6+ u7+ u8,
u3+u5+u7, u4+u5+u6 ), soc00, c01, c02 must all be zero. Hence (58) is true for arbitrary
u, β.

4.4. Identities involvingk, p, q

A number of hyperelliptic function identities for the three-state chiral Potts model have
already been obtained [17–19]. The relation betweenk andx is

(k′/k)2 = 27x[Q(x3)/Q(x)]12 (60)
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and if we define

α = αpq = exp{2π i[(sq)1− (sp)1]}
β = βpq = exp{2π i[(sq)2− (sp)2]}
γ = γpq = x−1/2 exp{2π i[(sp)2+ (sq)2− (sp)1]}

(61)

then

αq,Rp = x/αpq βq,Rp = 1/γpq γq,Rp = βpq/αpq
Wpq(1) = φ(α)φ(α/β) Wpq(2) = φ(α)φ(β)
Wpq(1) = φ(x/α)φ(xγ /α) Wpq(2) = φ(x/α)φ(1/γ )

(62)

which is consistent with the relationsWpq(n) = Wq,Rp(n), Wpq(n) = Wq,Rp(−n).
Note that some of these functions are expressed in terms ofα, β, and others in terms

of α, γ . There is a reason for this. ForN = 3, we can in principle eliminate the two
variablesp, q in favour ofα, β, or in favour ofα, γ , but the result will not necessarily be
single-valued. For instance if one tries to expandWpq(1) orWpq(2) in terms ofx, α andγ ,
even to leading order (forx small) one has to solve a quadratic equation for exp[2π i(sp)1],
and square roots proliferate in the working.

This difficulty can be traced to the fact that the substitution:

p→ M5q q → M5p (63)

leavesα, γ,Wpq(1),Wpq(2) unchanged, but interchangesWpq(1) with Wpq(2). Thus
Wpq(1), Wpq(2) cannot be single-valued functions ofα and γ and it is useless to look
for a convergent expansion with single-valued coefficients (e.g. Laurent polynomials). Note
that this objection does not apply to any symmetric function ofWpq(1) andWpq(2).

Similarly, the substitution

p→ M3q q → M3p (64)

leavesα, β,Wpq(1),Wpq(2) unchanged, but interchangesWpq(1) with Wpq(2). Thus
neitherWpq(1) norWpq(2) can be expressed as single-valued functions ofα andβ.

If u = ωj(α/β2)1/3, then the three terms on the LHS of (58) are proportional to
Wpq(0) = 1, ω−jWpq(1), ω−2jWpq(2), respectively. Defining the discrete Fourier transform

Xpq(j) =
N−1∑
n=0

ω−jnWpq(n) (65)

it follows that

Xpq(j) = 8(ωju, ω−ju2β/x)8(ωj−1u, ω1−ju2β)8(ωj+1u, ω−1−ju2β)

Q(x)2Q(x3)
4
ψ̃(α)ψ̃(β)ψ̃(α/β)

. (66)

From (20),Xpq(j)/Xpq(j − 1) = (ωcqap − ωjaqcp)/(bqdp − ωjdqbp). Interchanging
p andq and using (66), it follows that

ωcpaq − ωjapcq
bpdq − ωjdpbq =

8(ω−ju, ωjxu2β)8(ω1−ju, ωj−1u2β)

8(ω−ju, ωju2β)8(ω1−ju, ωj−1xu2β)
(67)

in agreement with (26).
From (24),

Wpq(1)Wpq(2) = xh(α/x2, β/x)/[αh(α, β)]. (68)
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Together with (66), this implies that the functionfpq defined in (21) is

fpq = V (x)Q(x)3Q(x3)ψ(α)ψ(β)ψ(α/β)

h(α, β)
. (69)

This is consistent with the known results [18, 19]:

fpqfq,Rp = 3/k′2/3 = x−1/3V (x)Q(x)/Q(x3)
3

fpq/fqp = φ(1/α)φ(1/β)φ(β/α)
(70)

and with the automorphismsM(1)
j , . . . , R.

Two further identities that we have obtained but not proved are

ωapbpcqdq − ω2cpdpaqbq

apbpcqdq − cpdpaqbq = −xh(α/x
2, β/x)φ(x2α)φ(x2β)φ(x2β/α)

αh(α, β)
(71)

bNp c
N
q − cNp bNq

bNp d
N
q − cNp aNq

= Gh(α, β)h(xα, β/x)h(α/x, xβ)

r(α)r(β)r(β/α)
(72)

where the constantG is

G = ix1/2kQ(x)−12Q(x3)
−6
. (73)

5. Summary

In sections 2 and 3 we have presented some general-N hyperelliptic function identities that
are relevant to the chiral Potts model. In section 4 we have considered explicitly the case
N = 3. Some of the identities of section 4 are special cases of those in section 3. Others
are not: for instance we have as yet no generalization to arbitraryN of the result (69) for
fpq .

This result is interesting in that it casts light on the analytic nature offpq : It is indeed
a meromorphic function, with only simple poles and zeros. It is not, however, a single-
valued function ofap, . . . , dq : the automorphismM(1)

1 /M
(1)
2 incrementss1, s2 respectively

by 1,−1. Applying this to eitherp or q leavesap, . . . , dq unchanged, but multiplies or
dividesfpq by a factorω. This is consistent with the general formula (3.22) of [20], and
(2.44) of [13]. This implies thatfpq is a single-valued meromorphic function on anN -fold
covering of theap, . . . , dq-surface.

The result (69) answers the problem mentioned on p 3498 of [19], where it is pointed out
that a tractable expression forfpq is needed if one is to use the standard inversion relation
method [21] to calculate the free energy of theN = 3 chiral Potts model, via equation (3.40)
of [20]. This has not been done, though the free energy has been calculated by other routes
[20, 22, 23]. The problem is similar to that of solving the functional relations for the
generalized one-site correlation function, which in turn would yield the order parameters
[8, 24].

The identities (15), (17), (53), (55), (57), (58), (66) are proved herein; (62) is proved in
[18]; (23) is a corollary of (17); (26), (27), (28) are corollaries of (25); (68) is a specialization
of (24); (69) follows from (66) and (68). The remainder, namely (25), (24), (71), (72), are
at this stage conjectures, but we believe it should be possible to prove them along the same
lines as the proof of (17), or more generally of equation (27) in [18]. Such a proof would
use the automorphismsM(1)

j , . . . , R and locate the poles and zeros of each factor. For
N = 2 to 4, these identities have all been tested numerically to at least 12 significant digits
for arbitrarily chosen values of the parameters.
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In a subsequent paper we intend to discuss the hyperelliptic parametrization of the
functional relations for the generalized one-site correlation function of the three-state chiral
Potts model, and will need the identities (25), (67).

Appendix

The relations (53) follow simply from the identities of Borweinet al [16], replacingq
therein by eitherx or x3. Let us denote equations therein by the prefix BBG. Comparing
(BBG 1.6) and (BBG 1.7) with our equations (31)–(51), we see that their functionsa, b are

a(x) = V (x) b(x) = V0(x)+ ω2V1(x)+ ωV2(x) = V0(x)− V1(x). (A1)

Hence from (BBG 2.1),

c(x3) = V1(x). (A2)

The third and second of our relations (53) follow at once from the two parts of
proposition 2.2 of BBG. Their ratio gives

[V0(x)− V1(x)]/V1(x) = Q(x)3/[3xQ(x9)
3
]. (A3)

The LHS of the last equation on p 36 of BBG isV0(q), so this gives the first of our
relations (53). Theorem 2.3 of BBG (which is the main theorem of their paper) becomes

[V0(x)+ 2V1(x)]
3 = [V0(x)− V1(x)]

3+ 27xQ(x3)
9
/Q(x)3

i.e.

V1(x)[V0(x)
2+ V0(x)V1(x)+ V1(x)

2] = 3xQ(x3)
9
/Q(x)3. (A4)

Multiplying by (A3), we obtain the last of the relations (53).
Very recently, Hirschhorn [25] has obtained direct and elegant proofs of the identities

(53).
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