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Abstract. We present a number of hyperelliptic function identities that occur in the chiral Potts
model. Some of these are relevant to the outstanding problem of solving the functional relations
for the order parameter.

1. Introduction

The chiral Potts model is a model in statistical mechanics in which each sfta planar
(usually square) lattice contains a ‘spi’ that can takeV values. Adjacent spins interact.
This model was first studied in Hamiltonian form [1-3], and for small value®’ d#, 5].
In 1988 the generaM integrable case of the lattice model was discovered [6]. This is
‘solvable’ in the sense that it satisfies the star—triangle (Yang—Baxter) relations, and the
bulk free energy has been calculated. Péor> 2 the order parameters have not been
calculated, but a very believable and elegant conjecture has been made [7]. Its derivation
remains a vexed problem [8], and is partly the motivation for this paper, where we present
certain identities satisfied by the hyperelliptic functions that occur in the parametrization of
the model and are relevant to the problem of solving the equations given in [8]. They have
not all been proved; their status is explained in the summary.

As often happens, we have a conflict of notations: the vertical and horizontal rapidities
of the chiral Potts model are usually denotedbwandg. We do this here, but as a result
we write the nome of them hyperelliptic functions asso thatg-series [9] become here
x-series.

2. Hyperelliptic parametrization

The interactions along any edge are functionsVgfof universal constants and k', and
of two ‘rapidities’ p andq. These are points in projective, b, ¢, d) space that lie on the
curve

aVv +k'bN = kad" KaV +b" = ke (1)
where
K+ k% =1. )
For N = 2 the model reduces to the Ising model solved by Onsager [10]; the curve
is of genus 1, and can be parametrized in terms of ordinary single-variable Jacobi elliptic
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6808 R J Baxter

functions. ForN > 2 the curve is of higher genus and we need to use hyperelliptic functions
[11]. Define constantp = {p1,..., py_1} Iin terms ofk, k' as in [11], withp, = py_q,
0o = pny = 0, and set

taﬁzpat“—pﬁ_p\a—ﬁl fOfOl,,B:l,...,N—l. (3)
Lets = {s1,...,sy_1} be a set of variables. Define the hyperelliptic function
O() :Zexp{ZniZmasa+niZZmara,3mﬁ} 4)
m o o B
the inner sums being over, 3 = 1,..., N — 1, and the outer sum over all values of the
integersm = {m, ..., my_1}.
Let g = {g1, ..., gn-1}, Where
8o = C(/N (5)
write {g1/2, ..., gn—1/2} in the obvious way ag/2, and similarly fors, p. Define
k = sing k' = cosd w =N (6)
x = igl@ Mo (s) = (s1+ - sn-1)/N. @)

Then from equation (48) of [11], we can take..., d to be
a:ei”/ZNez”im@(s—%g—i-%p) b=Xei”/N®(S—% - 2p)

c=0(+38—3p) d=xe "PNQ(s + 1g + 1p). ®)
Let
Dy, =0 if o <A
=1 ifo > A ©)

and write ® (s) alternatively asd[s] or ©{s,}. Thensy,...sy_1 are not independent, but
must satisfy theV — 2 relations

Ofse + 27w — 3D} =0 forn=2...,N-1 (10)

leaving one degree of freedom fer, ..., sy_1.

A related hyperelliptic functior® (s) is obtained by replacing each in (4) by s, — %
and lettingm, range over all half-an-odd-integer values,(..., my_1 remain integers).
From equation (32) of [11],

O1(s) = —iexp{i(s1 + 30)}O(sa + 371 — 3 Du1l. (11)
It is an odd function, zero when all its arguments are zero:
O1(—s5) = —O1(s) ©1(0) = 0. 12)

2.1. Invariances

The ®-function has the following symmetries (true for arbitrayy. . ., sy_1, Not necessarily
satisfying (10)):

Ofsa + 84} = O(s) = O(—s)

Ofsq + 1o} = exp{—27i(s; + p;)}O(s) (13)

O(s) = Ofsg—1 — sy-1} = Olsy1o — 51}
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for j=1,..., N —1, takingso = sy = 0. Hence
O1{sy + 8ej} = explmiD1;}O1(s)
O1{sq + Taj} = — eXP{—27i(s; + 0j)}O1(s).

Using the symmetries (13) (withh = 1), for all integersn and arbitrarysy, ..., sy_1
we can verify that

(14)

O{npy + so} = e—Zninn@{npa + Sot1 — S1}-
Settings, = ja/N forae =1,..., N — 1, with j an integer, it follows that
®mp + jg) = 0 providednj/N is not an integer (15)

Numerical calculations suggest that (15) may also be true when4 andn = j = 2,
which in turn suggests that it may be true for the more general situation when neitloer
j is divisible by N. This would be consistent with the zeros of our later equations (26),
(27), but we have not proved this. Its proof must be more subtle: (13)—(15) are true for
arbitrary pq, ..., py—1 (With p; = py_;), whereas a leading-order calculation for sriall
indicates that, fotv = 4, ®(2p + 2g) is zero only whenp,, p, are related as in [11].

There are various automorphisms that take, c, d, s, to the values indicated in the
folowing table, leaving the relations between them unchanged, namely

M;l) wa b c wd Sq + 84
M;z) wla| o'b c d Sq + Taj
M® ¢ | o¥d | o V2% | v —Sy
MP | a b | wlc | d | sec1—Sv-1+ 301+ Taz — Ta1)
M® d o2 | o= Y2p a SN+l — §1 — lral
R b wa d c 51— SN41-a T 5Tal
for j =1,..., N —1, ignoring overall normalization factors af b, ¢, d. For instance, the

mappingM® takesb to w*?c, ands, 10 syi1-o — 51 — 3T01. Note thatR = MO M©®,
R?=M® andM®® = M®* = 1.

2.2. A basic identity

The variablesu, b, ¢, d, s = {s1, ..., sy_1} are all functions of the rapidity (put another

way, p is specified by these variables, or by some subset of them), so should bear an index
p. Let us write them as,, b,, c,, dp, s, = {(5p)1, - - ., (5p)n—1}, With the convention that

a Greek, numericalN or N — 1 suffix denotes the element of the setwhile a lower

case Roman suffixy(, ¢, r or tr) denotes the rapidity of the whole set. A related variable,

in terms of which we originally obtained the hyperelliptic function parametrization, js
where

byd .
PP — expli( + 2v,)/N}. (16)
a,cp
Then for any four rapiditiep, g, r, t
®l(sp - sq)®1(sp + sq)®1(sr - St)@)l(sr + Sz)
_®1(Sp - st)®l(sp +5)01(s, — 54)81(51‘ + Sq)
= O1(s; — 5p)O1(s; +55)O1(s; — 54)O1(s; + 5¢). (17)
This is a very general identity which extends the corresponding identity for ordinary
elliptic functions: equation (15.3.10) of [12]. It can be proved in much the same way.
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Consider the ratio of the LHS to the RHS: from (12) and (14), it is invariant under the
automorphismsM ¥, M@, M®, applied to the rapidityp (say). It follows that it is a
single-valued function of the variable, (it is independent of the choice of the contour and
the sign ofA in equation (35) of [11]). Itis analytic, except possibly for isolated singularities
at the zeros of the RHS, and at the points whgge,, . . ., (s,)y—1 are nonanalytic functions

of v,. These last are wher), equalst6 or oo, and it can be verified that the ratio remains
finite as v, approaches these values. Since it is analytic in their neighbourhood, it is
therefore analytic at these points.

There are two possible types of zero of the RHS: there are those whose location is
dependent on the other rapidity occurring whers, = +s,, to within the automorphisms
MY, M?, i.e. whenv, = v,. They are simple zeros, and it is obvious that the LHS then
also vanishes, so the ratio is analytic.

The other possible zeros are when

(Sp)a = %(fal - Tozj + Drxj - Dal) (18)

for j =2,..., N —1. If this happens, then from (11), the fact®i(s, —s,) is proportional

to O{(s,)s + %raj — %Daj}, which vanishes because of the restrictions (10). However, the
same is also true of the facto® (s, — s,) and ®1(s, — s,) on the RHS (and, because of
the M® automorphism, of the facto®,(s, + s,), O1(s, + 5,), O1(s, + 51)).

One should consider whether the values (18)sgj1, . . ., (s,) y—1 are attained for some
value ofwv,, i.e. whether they satisfy (10). F&f = 3 they do, but forNV > 3 it seems that
they do not. In either case there is no problem: if they do attain (18) then each of the six
factors will have a simple zero in,, and these factors will cancel out of the ratio of the
LHS to the RHS of (17). If they do not, then there are no such zeros to cancel.

In either case,the ratio is analytic for al}, (including the point at infinity), so from
Liouville’s theorem it is a constant. Taking, = v;, we can choose, = s; and observe
that this constant is unity. This establishes the identity (17).

We shall present a number of further identities; first we need some more definitions:

ty =514+ 5o —a(s14+---+sy_1)/N. (19)

As with s, letr = {r, ..., ty_1}, and writez, for the setr corresponding to the rapidity.
The automorphisnk? = M? applied top takest, to 7, + p, while M\" ... M, takes
1,01, +g.

3. Functions of two rapidity variables

The Boltzmann weights of the chiral Potts model are

n n

dyb, — a,c,w’ — wa,d, —d,a,w’!
w — g TP W — —rp7q P4 20
o) 111 bpdy — cpagw’ o ]l:!- cpbg — bpcg@! 29

Both are periodic of periodV: W,,(n + N) = Wy, (n), Wy, (n + N) = W, (n); regarding

W,,(i — j) as the element j of an N x N cyclic matrix W ,,, a quantity that occurs in
the functional relations for the transfer matrices [13] is

N-1
fog = (detW )YV / [T Wog ™" (21)
n=0
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Another quantity that occurs in the functional relations for the generalized correlation
function [8] is

N-1 j—m— j—m— m/N
{b,,dq —w 1d,,bq cpdy — w’ 1a,,cq } (22)
q

Oy — p(N-1/N
qu (J) =k H
m=1

_ yj—m—1 _ yj—m—1
cpdy — dpcy bpag — w apb

3.1. Some genera¥ identities

With the normalization of equation (8), it follows from (17) that
i . .
agcqbyd, — aycpbyd, = _X2 exp{ﬁ + 2mi(s,) + 271I(sq)}

X®l(p)®l(g)®l(sq - Sp)®l(sq + Sp)- (23)

Two identities that we conjecture to be true, but have not proved, are

N-1 N-1 Nlog 4 g+ p)
w = exp! xi 20— N =1 (s, — 5, — p)a P4 24
,E[l ral®) p{n ;1( ; g =5 =) }E, Oty — 1y + jg) 9
. O, —t,+J
LOG) = — 2 = lp +J8) (25)

Oy —t, +(j —Dg)

. Remembering thatze, = 1, + p and forming the rati(L[f’)qu (j)/L;,?I) (j), from (25) we
obtain

wcpay — a)ja,,cq _ Oty —t, + (G —DglO@, —t, + jg +p)

bpd, — widyby — Oty — 1, + jg)Olty — 1, + (j — Dg + p] (8)
while the ratioL?, (j + 1)/L{) (j) gives
byd, — a)J:dpbq Cply — a)/:apcq 2N Q(tq — 1, + jg)? | e
cpdy — w/dyey bya, — wlayb, Oty —t, + (G —DglB[t; —t, + (j + Dg]
from which one can deduce that

©(jg)/O(0) = k/ NIV for j=0,...,N. (28)
4. The caseN =3
If N =3, thenp; = p, = p, so if we define

x =P xl <1 (29)
then

Ofsa, 52} = P(E7, €71%) (30)
where

Ola, B) = Y A" "B (31)

m,n

the sum being over all integers, n.
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4.1. Identities for arbitrary arguments

First we prove some identities that are true for all argument8 of the hyperelliptic
functions.

The function® («, 8) can be expressed as the sum of two products of single-variable
®-functions [11]: for this reason such single variable functions occur in the following
relations. Four that we shall need are

V@ =[]Aa-x*@-x"Y2) Y@ =) (32)
n=1

r@="Ja-x""9A-x"/2 @ =vEH/YE. @33
n=1

The symmetry and quasiperiodicity relations (13) become
(. B) = P(B.a) = D, 1) = Pa, a/B) = P(B/a. B) (34)
& (x%e, xB) = x a0 (a, B) ®(xa, x2B) = x 171D (a, B) (35)

and henced (x3x, B) = x3Ba2d(a, B), ®(a, x3B) = x af2d(a, B).
From these one can deduce that

P(a/x, ) = a®(x B a/B). (36)
Settinga = 1/8 = w or «?, it follows that
O (w/x, w?) = ®(w?/x,w) =0 (37)

which is a special case of (15).
Three related functions are

CDj (Ol, ,8) — Z xm2+mn+nzamﬁn (38)

m—n=j, mod 3
the sum being over all integers, n such thatn —n = j, modulo 3. Then

P (@, 0™ B) = Do, f) + & Pa(e, B) + 0¥ Da(at, ) (39)
and

®; (xa, x2B) = x 71D _1(a, B). (40)

4.2. First product—sum relation
Let «, 8, u be three variables related by

o = u3p? (41)
and consider the product

h(a, B) = ®(u, u?f)(wu, 0*u?p)d(w?u, wu?p). (42)

(This is the function[ | ©(¢ + jg) that occurs in (24).)

The RHS is an analytic function of and 8 in the domain O< |u|, |8| < oo, and is
unchanged by replacing by wu, so has a convergent double Laurent expansion in powers
of u® and B, or equivalently ofw and g:

h(a, B) = cune"B". (43)
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It satisfies the quasiperiodicity relations

h(x3a, B) = x2Bah(a, B) h(a, x38) = x2ap2h(a, B). (44)
The functions®, ®q, @, ®, also satisfy these, buit doesnot satisfy the stronger relations
(35)éubstituting the expansion (43) into these relations and equating coefficients:

Cmi2n-1 =313, etz = X3, (45)
The general solution of these equationscjs = Ay _px™Hmntn? whered,, ;3 = d,, SO
h(a, B) must be a linear combination dfy(a, 8), ®1(c, B), P2(c, B):

h(a, B) = Co@o(a, B) + C1P1(a, B) + C2P2(a, B) (46)

the coefficientCy, C1, C2 depending only onx.

Inverting o, B, u in (42), and using the symmetd (a1, 1) = ®(a, B), we find that
h(a™t, B~ = h(a, B). Sinced(a~t, B71) = ®a(a, B), this implies thalC; = C,. Setting
o, B,u =x,x%, x~1in (42) and using (37), we note that

h(x,x?) =0. (47)
Substituting this into (46) and using (40), it follows that
Co®2(1, 1) + C1[Po(1, 1) + @1(1, 1] = 0. (48)
Let
Vix)=®(,1) Vix) = @;(1, 1). (49)

We note at this point that we are treading in the footsteps of the masters: the fuvi¢tipn
was examined by Ramanujan, who wrote down the formula

00 x3n—2 x3n—l
Vx) = 1+6; {1_)63”2 - 1_x3n1} :
From (39) and symmetry,
V(x) = Vo(x) + Vi(x) + Va(x) Vi(x) = Va(x). (51)
Expanding these functions, we find to the first few terms that
Vox) = V(x® =1+ 6x°+6x° +6x2 412421 4 ...

(50)

52

Vi(x) = Vo(x) =3x +3x* +6x" +6x3 ... (52)
which led us to conjecture that
Vo(x) = V(x®) Vi(x) = Va(x) = 309’/ 0% (53)
Vo(x) — Vi(x) = 0(x)°/Q(x®) Vo)® = i(x)® = 0%/ 0(x%°
where

o) =] Ja—-xm. (54)

n=1

The author is indebted to George E Andrews [14] and Michael Hirschhorn [15] for
providing proofs of these relations (53). In particular, Andrews showed that they are simple
consequences of the identities proved by Borwetral [16] in their paper on the cubic
modular identities of Ramanujan. This is shown in the appendix.

Solving (48) for C1/Cp and obtaining the normalization of, C1, C2» by setting
o = B =1in (46), we obtain the alternative expression kg, 8):

h(a, B) = [Q(x)*/ Q][ V (x)Do(a, B) — Vi(x)D (e, B)]. (55)
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4.3. Second product—sum relation

A related identity that we shall use is proposition 2.2 of [16], namely

®(x, x) = 30(x%3/ Q). (56)

(One can verify directly from their definitions as double sums tat) = x®(x3, x%)
[15].) From (34) and (37)®(x, x) = ®(1, x) and ®(w, w’x) = ®(w?, wx) = 0.
It follows that

D, x/u) = Q(x)0 (x> ]_[(1 —ox" )1 — X" uH(1 — 0*x" ) (A — wx"uh).
n=1

(57)

The proof of (57) is similar to (but simpler than) that of (55). Writing either sidef as),
each satisfies the quasiperiodicity relatigixu) = u=2f(u), and is Laurent expandable
in the domain O< |u| < co. Their difference therefore has a Laurent expansion,u",
wherec, .2 = x"¢,. Thusc, is proportional tacg (c1) if n is even (odd), so the difference is
a combination of just two linearly independent functions, with coefficieptandc;. Both
sides vanish when = o ( or whenu = w?), which fixes the ratiac1/co. From (56), the
two sides are equal whan= 1, which fixesco, ¢; to be zero and proves (57).
Just as we used (56) to establish the more general relation (57), so we can use (57) to
establish that

V(@)Y (B (a/B) + u?BY (L) (B)Y (B/a) + up¥r(1/e) ¥ (1/B)V (/)
= 002003 D, u2B/x) P (0 u, wu?B) D (i, & up) (58)

for all «, 8, u satisfying (41).
To prove this, regara, 8 as independent complex variables ands defined by (41).
Write either side ag'(u, 8). Then each satisfies the quasiperiodicity and symmetry relations

f, B) = (x%a®/B) f(xu, B) = x%aff (u/x, x°B)
fu, B) = fu™u®B) = u®Bfwp,u=>p72).

Each is Laurent expandable in integer powers @ind g8: it follows that the difference can
be written as

29 2_
§ XM /3—mn+n n/3um’3n
mn

wherec,, = cmi3n = Cmn+3 = Can—mn = C3n—2m+1n-m+1.- 1h€cCy, are therefore all linear
combinations otqg, co1, co2, SO the difference is the sum of just three linearly independent
functions ofu and 8, with coefficientscqo, co1, coo.

If we choosep = x2/u®, thena/B = x2, ¥(a/B) vanishes and we regain (57). The
difference therefore vanishes. The three functions now depend only, dut are still
linearly independent (to leading order they are proportionadte- u® + u® + u® + u” + u8,
ul+ub+u’, ut+ud+ub), soceo, co1, co» must all be zero. Hence (58) is true for arbitrary

u, B.

(59)

4.4. |dentities involving, p, ¢

A number of hyperelliptic function identities for the three-state chiral Potts model have
already been obtained [17-19]. The relation betweamd x is

(K'/k)? = 27x[ Q(x*)/ Q(x)]*? (60)
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and if we define
o = ap, = exp2ri(sy)1 — (sp)1]}
B = Bpg = exp{2mi[(s4)2 — (s5p)2]} (61)
Y = Vpg = X 2expl2ni[(s,)2 + (59)2 — (sp)1])

then

g, rp = X/0pg Ba.rp = 1/¥pq Ya.Rp = Bpq/%pq
Wy (D) = ¢(x/a)p(xy/a) Wy (2) = ¢(x/a)p(1/y)

which is consistent with the relatior® ,, (n) = W, g,(n), Wy, (n) = W, gp(—n).

Note that some of these functions are expressed in termas @f and others in terms
of a,y. There is a reason for this. F& = 3, we can in principle eliminate the two
variablesp, ¢ in favour of«, 8, or in favour ofa, y, but the result will not necessarily be
single-valued. For instance if one tries to expaWg, (1) or W,,(2) in terms ofx, « andy,
even to leading order (for small) one has to solve a quadratic equation for exp(2,)1],
and square roots proliferate in the working.

This difficulty can be traced to the fact that the substitution:

p — Msq q — Msp (63)

leavesa, y, W, (1), W,,(2) unchanged, but interchangég,, (1) with W,,(2). Thus
W, (D), W,,(2) cannot be single-valued functions afand y and it is useless to look
for a convergent expansion with single-valued coefficients (e.g. Laurent polynomials). Note
that this objection does not apply to any symmetric functiopf (1) and W, (2).
Similarly, the substitution

p — Msq q — Msp (64)

leavesa, B, W,, (1), W,,(2) unchanged, but interchange®,, (1) with W,,(2). Thus
neitherW ,, (1) nor W,,(2) can be expressed as single-valued functions ahd g.

If u = w/(a/B??Y3, then the three terms on the LHS of (58) are proportional to
Wy (0) = 1, 0™/ W, (1), =% W, (2), respectively. Defining the discrete Fourier transform

N-1

Xpg(J) = Z o™ I" Wy (n) (65)

n=0
it follows that
O (wlu, 0 u?B/x)P (0 u, 0¥ u?B)® (0! 1u, =7 u?p)
Q)20 () ¥ (B)Vr (/B) '

From (20), X, (j)/ Xpq(j — 1) = (wcya, — w’aycy)/(byd, — w/d,by). Interchanging
p andg and using (66), it follows that

qu (]) = (66)

wc,a, — a)ja,,cq . (v u, a)jxuz,B)CD(a)l’ju, a)j’luz,B)
bpd, — w/dy,b, T (o u, 0w u2B)P (0t u, wi—lxu?p)

in agreement with (26).
From (24),

W g (DW g (2) = xh(a/x?, B/x)/[ah(a, B)]. (68)

(67)
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Together with (66), this implies that the functigf, defined in (21) is
V(x)Q(X)sQ(xs)w(a)w(ﬂ)w(a/ﬁ)_

= 69
Tra h(a, B) (69)
This is consistent with the known results [18, 19]:
Foafuro = 3K = 27V (1) 0(x)/ Q) 70)
qu/fqp =¢1/)p(1/B)p(B/a)
and with the automorphism& ™", ... R.
Two further identities that we have obtained but not proved are
wapbycydy — w?cpdpagh, — xh(a/x? B/x)¢(xPa)p(x*B)¢ (x*B/at) 71)
aybpc,d, — cpdpagh, ah(a, B)
by el — bl _ Gh(a. ph(xa, B/x)h(a/x, xp) 72)
byd) —cllall r(a)r(B)r(B/w)
where the constant is
G = ixY%0(x) 203 °. (73)
5. Summary

In sections 2 and 3 we have presented some genetalperelliptic function identities that
are relevant to the chiral Potts model. In section 4 we have considered explicitly the case
N = 3. Some of the identities of section 4 are special cases of those in section 3. Others
are not: for instance we have as yet no generalization to arbitvaoy the result (69) for
Fra-

" This result is interesting in that it casts light on the analytic naturég,of It is indeed
a meromorphic function, with only simple poles and zeros. It is not, however, a single-
valued function ofa,., ..., d,: the automorphism\" /M incrementssy, s, respectively
by 1, —1. Applying this to eitherp or q leavesa,, ..., d, unchanged, but multiplies or
divides f,, by a factorw. This is consistent with the general formula (3.22) of [20], and
(2.44) of [13]. This implies thatf,, is a single-valued meromorphic function on Arfold
covering of thea,, ..., d,-surface.

The result (69) answers the problem mentioned on p 3498 of [19], where it is pointed out
that a tractable expression fg}, is needed if one is to use the standard inversion relation
method [21] to calculate the free energy of tkie= 3 chiral Potts model, via equation (3.40)
of [20]. This has not been done, though the free energy has been calculated by other routes
[20, 22, 23]. The problem is similar to that of solving the functional relations for the
generalized one-site correlation function, which in turn would yield the order parameters
[8, 24].

The identities (15), (17), (53), (55), (57), (58), (66) are proved herein; (62) is proved in
[18]; (23) is a corollary of (17); (26), (27), (28) are corollaries of (25); (68) is a specialization
of (24); (69) follows from (66) and (68). The remainder, namely (25), (24), (71), (72), are
at this stage conjectures, but we believe it should be possible to prove them along the same
lines as the proof of (17), or more generally of equation (27) in [18]. Such a proof would
use the automorphismM}l), ..., R and locate the poles and zeros of each factor. For
N = 2 to 4, these identities have all been tested numerically to at least 12 significant digits
for arbitrarily chosen values of the parameters.
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In a subsequent paper we intend to discuss the hyperelliptic parametrization of the
functional relations for the generalized one-site correlation function of the three-state chiral
Potts model, and will need the identities (25), (67).

Appendix

The relations (53) follow simply from the identities of Borwedt al [16], replacingg
therein by eitherr or x3. Let us denote equations therein by the prefix BBG. Comparing
(BBG 1.6) and (BBG 1.7) with our equations (31)—(51), we see that their functiohare

a(x) =V (x) b(x) = Vo(x) + @ Vi(x) + 0Va(x) = Vo(x) — Va(x). (A1)
Hence from (BBG 2.1),
c(x®) = Vi(x). (A2)

The third and second of our relations (53) follow at once from the two parts of
proposition 2.2 of BBG. Their ratio gives

[Vo(x) — Va(0)]/ Va(x) = 0(x)%/[3x 0 (x%)°). (A3)

The LHS of the last equation on p 36 of BBG ¥(g), so this gives the first of our
relations (53). Theorem 2.3 of BBG (which is the main theorem of their paper) becomes

[Vo(x) + 2V1(0)] = [Vo(x) — Vi)]® + 27x 0 (x)°/ 0 (x)°

Vi) [Vo()? + Vo) Va(x) + Va(1)?] = 3x0(+3°/ 0 (x)°. (A4)

Multiplying by (A3), we obtain the last of the relations (53).
Very recently, Hirschhorn [25] has obtained direct and elegant proofs of the identities
(53).
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